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Abstract. Analysis of sentences in a natural language is often based on
similar methods as analysis of formal languages. Analogically, analysis of
pictures could be based on analysis of formal picture languages. However,
the field of formal picture languages is not developed enough for this
purpose. This paper presents several models of automata accepting two-
dimensional languages and outlines their learning capabilities. Further, it
examines the possibility of transforming a two-dimensional language into
a one-dimensional language and applying machine learning techniques in
a single dimension. In this paper, we propose a new representation for
formal picture languages consisting of two components – a picture-to-
string function and a string language. The function rewrites any two-
dimensional picture into a string. A picture language is then the set
of all pictures that the function maps into the given string language.
Using this representation, picture languages can be learned by applying
methods of grammatical inference for string languages.

Keywords: learning, grammatical inference, automata, formal languages,
picture languages.

1 Introduction

In comparison to one-dimensional (string) languages, our knowledge about two-
dimensional (picture) languages is limited [14], even though their theoretical and
practical significance is comparable – they can be both used as formal models
of practical problems. In the case of picture languages it can be for instance
automatic detection of different shapes (e.g. road signs) or more generally any
problem on two-dimensional data which has some pattern regularity [30].

In this work we focus on formal two-dimensional languages, i.e. sets of two-
dimensional pictures that have formally exact description. They are referred to as
picture languages, but they are not sets of pictures in the common sense, as such
sets, like the set of photos containing cars, cannot be defined mathematically.
While deep neural networks are known as the best tools for recognizing objects in
images [19], their application for picture languages is limited. On the other hand,
powerful models of automata working on two-dimensional inputs are usually
non-deterministic and inefficient for applications.

Here we propose a method for learning picture languages from positive and
negative samples. Learning a model (a grammar) for a target language based
on some information about the words of the language is called grammatical
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inference [15]. In case of one-dimensional (string) languages, there are several
known algorithms of grammatical inference for a number of classes of languages.
Much less is known about grammatical inference for two-dimensional languages.

Two types of representations of pictures can be found in the literature. The
first one is generative – such representation describes how a picture can be
generated from a string. Freeman in [12] introduced an 8-letter alphabet inter-
preted as movements north, south, east, west, northeast, southeast, northwest,
and southwest. By interpreting a word over the alphabet called a “chain code”
we obtain a drawing. Hence, a picture is a set of unit length lines on a plane.
This was later simplified to a 4-letter alphabet with the first four movements
from the Freeman’s alphabet [23]. Later, Costagliola [11] extended the alphabet
in order to generate colored pictures or pictures with labels.

The second representation of a picture is a rectangular array of symbols that
can be interpreted as colors of pixels in the image.

Using the first representation of pictures, a picture language can be repre-
sented as a set of strings describing all pictures in the picture language. Using
the second representation of pictures, a picture language is the set of pictures
accepted by a device (automaton) working on two-dimensional inputs. For exam-
ple, the class of recognizable picture languages is accepted by non-deterministic
online tessellation automata [14], even more powerful are sgraffito automata [33]
and two-dimensional limited context restarting automata [20]. These automata
models are quite powerful but they share high complexity – the problem whether
given input picture is accepted by such automaton is NP-complete.

Here we propose a new representation for picture languages, which uses
rectangular arrays of symbols for representing pictures and string languages for
representing sets of pictures. The new representation consists of a function R that
rewrites any two-dimensional picture p into a string R(p) and a one-dimensional
(string) language L. The picture language is then the set of all pictures p for
which R(p) is in L. Further we propose one such function R and combine it with
a classical algorithm for inferring regular languages from positive and negative
samples. In this way we obtain a method for learning picture languages.

The paper is structured as follows. After introducing basic definitions for
pictures and picture languages in Section 2, the next section introduces the used
learning paradigm. Then, in Section 4 we discuss the generative representation
of picture languages and some known results on learning picture languages
represented in this way. Next, in Section 5 we informally present several models
of two-dimensional automata which work on pictures as rectangular arrays of
symbols. Also some results on learning such automata are included. The crucial
Section 6 introduces the new representation of picture languages and lists results
of experiments with inferring representations for several simple picture languages
using grammatical inference for regular languages. Concluding section contains
outline for further research.
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2 Pictures and Picture Languages

In the past, several authors recognized that describing multidimensional objects
by strings enables them to apply the means developed in the field of formal
languages for studying sets of objects [23]. The first approach to describe two-
dimensional pictures by one-dimensional strings were chain codes. Here we use
its simplified version from [23]. According to it, a picture is a set of unit length
lines in the Cartesian plane. A word in the alphabet Π = {l, r, u, d} is a picture
description. A set of picture descriptions is a picture description language. For
a picture description q ∈ Π∗, its interpretation denoted as pic(q) is the drawing
obtained in the following way: The interpretation starts by placing a pen at
any point with integer coordinates in the Cartesian plane. Next each letter x of
q, from left to right, is interpreted as moving the pen by unit distance in the
direction left, for x = l, right, for x = r, up, for x = u, and down, for x = d.
E.g., the letter ‘L’ can be drawn as uuddr. Obviously, the resulting picture is
connected. A picture consisting of several non-connected parts would be possible
to represent by extending the alphabet Π by symbols ↑ and ↓, for lifting and
lowering the pen above and down to the drawing plane, respectively.

Of course, such interpretation can draw a picture at any position in the plane.
We usually do not distinguish between pictures which differ by their position in
the Cartesian plane – the detailed definitions can be found in [23].

For a nonempty fixed picture q consisting of a connected set of unit length
horizontal and vertical lines there exists infinite number of its picture descrip-
tions. Consider for example the set of picture descriptions given by the regular
expression (rl)+ that all describe a horizontal line of unit length. The set of all
picture descriptions of q is denoted as des(q). It is known that des(q) is a regular
language [23].

The second approach defines a picture P as a two-dimensional rectangular
array of elements from a finite alphabet Σ (see [13]). We say that P has di-
mensions (m,n), if it has m rows and n columns. Then Pi,j from Σ denotes
the symbol at position j in row i. The set of all rectangular pictures over Σ of
dimensions (m,n) will be denoted as Σm,n and the set of all rectangular pictures
over Σ of any dimension will be denoted as Σ∗,∗. A picture language is then any
subset of Σ∗,∗.

Any automaton working on an picture P of dimensions (m,n) needs to know
where is the border of the picture, therefore the picture is usually surrounded
by sentinels #, where # 6∈ Σ. Delimited picture P is called boundary picture P̂
over Σ ∪ {#} of dimensions (m+ 2)× (n+ 2) – see Fig. 1.

3 The Learning Paradigm of Exact Identification

The learning paradigm of exact identification [3] has already been applied in a
number of domains including regular [2] and context-free languages [34].

A concept in a universe of objects is any subset of the universe. A class of
concepts is a set of concepts. Concepts can be usually represented by words
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Fig. 1. The boundary picture P̂ .

over some fixed finite alphabet. Then, the learning lies in exactly identifying an
unknown (target) concept chosen from a specified class of concepts C, i.e. com-
puting a representation of the unknown concept. To learn, the learner may use
some given information about the target concept (for example, a set of positive
and negative samples, i.e. words from the concept and words not belonging to
the concept) or it can even pose certain types of queries to a teacher returning
the correct answers. Usually, the following two types of queries are considered
(see [2]):

– a membership query, where the learner proposes an object x: the reply is yes
if x belongs to the target concept and no otherwise, and

– an equivalence query, where the learner proposes a representation p (in the
specified system) of a concept in C: the reply is either yes if p represents the
unknown concept or no if p is wrong and in this case the teacher also returns
an arbitrary object x that p and the target concept classify differently.

Any class of concepts is trivial to learn with equivalence queries given a
recursively enumerable set of representations: we just ask until the yes answer is
received; and thus the main interest lies in the efficiency of learning algorithms.

Several known methods (protocols) can be used for learning (string) lan-
guages (see [15]). A combination of membership and equivalence queries in
a polynomial-time algorithm for learning regular languages was presented by
Angluin [2]. In her approach, regular languages are represented by state-minimal
deterministic finite automata and the algorithm is polynomial in the number of
states of a minimal automaton for the target language and the length of the
longest counterexample received as response from an equivalence query. It was
shown in [4,24] that there exists no polynomial-time learning algorithm that
would identify the regular languages either from equivalence queries or from
membership queries alone.

Here we will concentrate on learning from positive and negative samples. In
particular, we will apply one of the well-known algorithms for learning regular
languages from positive and negative examples called RPNI —- Regular Positive
and Negative Inference by Oncina and Garcia [27].

Informally, the RPNI algorithm starts by separating the set S of all sample
words (also called a training set) into a set of positive samples S+, which are
words belonging to the target language, and a set of negative samples S−, which
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are words not belonging to the target language. At first, the algorithm builds a
prefix tree automaton from all positive samples. The automaton has states which
correspond to all prefixes for all positive samples in S+ and it accepts exactly all
words from S+ (i.e. a finite language). Then the algorithm traverses the states of
the current automaton and tries to merge pairs of states. If, after merging a pair,
no negative sample from S− is accepted by the resulting quotient automaton, the
merged automaton becomes the current automaton, otherwise the automaton is
not changed and the algorithm proceeds trying to merge following pairs in a
predetermined order.

The running time of the algorithm is O(‖S+‖+ ‖S−‖ · ‖S+‖2), where ‖X‖,
for a set of words X, denotes the number of states of a prefix tree automaton
accepting all strings from X. The algorithm is guaranteed to produce a finite
state automaton consistent with the set of samples S. This means that the
resulting automaton accepts all words from S+ and rejects all words from S−.

4 Learning Picture Description Languages

What follows is an informal and intuitive insight into formal definitions and
results from [8].

Using the definitions from Section 2, any picture consisting of a connected
set of unit-length lines in the square grid of the Cartesian plane together with its
starting and ending point can be represented by a string over the alphabet Π =
{l, r, u, d}. Then, the picture pic(w), for w ∈ Π∗, can be viewed as an equivalence
class as many pictures can be translated into one another and because a pen may
traverse the same line multiple times. Thus, there are infinitely many words that
represent a given nonempty picture. For instance, both pictures pic(uuddr) and
pic(rluduuddr) are identical as they define the same set of unit lines and they
have the same starting and end points.

We say that a regular language L is a description language of a picture q if
∀w ∈ L : pic(w) = q. Let Bq consist of all description languages of q. The regular
language des(q) of all descriptions of a picture q belongs to Bq.

For any pictures q1, q2, their concatenation q1q2 is the picture obtained by
joining the end point of q1 and the starting point of q2. Now we can define the
class of regular picture sets P. It is the minimal class of picture sets satisfying
the following:

1. The empty set is in P.
2. For each picture q, {q} is in P.
3. If B1 and B2 are in P, then also

(a) B1 ∪ B2 is in P,
(b) B1 · B2 = {q1q2 | q1 ∈ B1, q2 ∈ B2} is in P, and
(c) B∗ =

⋃
i≥0 Bi is in P, where Bi+1 = Bi · B.

Brüggemann-Klein et al. [8] considered several grammatical inference prob-
lems for regular picture sets. They showed that inferring a description language
for a fixed picture q can be as hard as inferring arbitrary regular language. Let
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Bn denote the set of all complete descriptions of pictures of size n, i.e. having
n unit line segments. Each reasonable learning algorithm for Bn requires Ω(2n)
membership queries in the worst case.

The inductive structure of such P allows [8] to resent them as regular expres-
sions over the alphabet Π = l, r, u, d. However, some regular expressions over Π
do denote different regular languages of words but the same picture set. When
inferring regular pictures sets, membership queries are not sufficient for exact
identification of regular picture sets.

Due to the ambiguity of representation of regular picture sets by regular
expressions over Π, the authors in [8] conclude that the methods they proposed
cannot be applied to them except for a very special case of staircase pictures,
whose regular sets can be denoted by regular expressions over the alphabet {r, u}.

The results on inferring regular picture sets carry over to drawn symbolic
languages of [11]. A drawn picture is another term for describing unit lines
drawn on the Cartesian plane. By adding an alphabet symbol to each point
of the picture we get an intuitive and simple extension called drawn symbolic
picture. It can be easily seen that these picture languages can also describe
picture languages as per the definition in Section 2. Similarly to picture sets, they
can be represented by strings. Several important results are proven for regular
drawn picture languages: The membership problem is NP-complete [35] and the
equivalence, containment and ambiguity problems are undecidable [17,18].

With respect to grammatical inference of picture languages, the above regular
picture sets and drawn symbolic picture languages share one problem: on given
input picture (without its starting and ending points), how to obtain its string
description. This problem was not studied yet.

5 Two-Dimensional Automata for Picture Languages

While for string languages we have hierarchies such as the Chomsky hierar-
chy [10], picture languages lack a similar concept. Moreover, it seems that the
taxonomy of languages accepted by various two-dimensional automata is more
complicated and so far there has been no complete description of such.

There are known several models of 2D automata [14,6,16,31,32] that gener-
alize the class of regular languages into two dimensions and whose restriction to
a single dimension leads to a regular language.

Naturally, for learning of automata it is necessary for us to be able to
do all computations effectively. This is hardly achievable for nondeterministic
models like online tessellation automaton [14] or sgraffito automaton [31,33]
or two-dimensional limited context restarting automaton (2LCRA, for short)
[21]. For all these two-dimensional automata models, the membership problem
is NP-complete as it is NP-complete already for the REC class accepted by
online tessellation automata. The classes of languages accepted by sgrafitto
automata and by 2LCRA coincide and they are proper supersets of REC. In
contrast to these automata, for the nondeterministic versions of 2LCRA the
membership problem is solvable in polynomial time, if the automaton has a
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so-called correctness preserving property, i.e. if the input word is from the
accepted language, then each rewriting operation leads again to a word of the
same language [21]. Unfortunately, to find out whether a given automaton has
the correctness preserving property is algorithmically undecidable problem [21].

5.1 Learning Two-Dimensional Automata

There have been many experiments with learning of automata. Typically those
were supervised learning methods. For one-dimensional automata there exist
interesting algorithms such as L* [2], RPNI [26], EDSM [22], Biermann-Feldman
algorithm [7] and more, whose analogies or generalizations into two dimensions
are not known.

Each learning algorithm for two-dimensional automata requires to test ac-
ceptance by such automata. Hence, deterministic automata with polynomial
complexity of computations are necessary. Nondeterminism of computations of
two-dimensional automata can be reduced by limiting the freedom of movements
of a head within the picture. E.g., a scanning strategy prescribes the sequence
of movements of a head within the picture that visits each field of the picture in
a tiling automaton [5] and restarting tiling automaton [32].

Determinism can be achieved by other means as well. It is possible to limit
the freedom of application of rules – for example, the first plausible rule is used
[29] or the automaton is allowed to (deterministically) choose the movement
through the picture by itself based on what it finds in the picture [25,28,29].

The author of [20] proposed an alternative approach to simulation via sgraf-
fito automaton with employing a solver for Constraint Satisfaction Problem: A
list of all feasible reductions is generated by the algorithm for every position of
the picture. Then sets of locally compatible reductions are chosen until either the
generated reductions are exhausted, in which case the input picture is rejected, or
a set is found that forms a valid computation of 2LCRA, resulting in acceptance
of the input picture. This method is not very efficient and in order to obtain
results in a reasonable time, several enhancements and dedicated heuristics and
data structures need to be used.

6 A New Representation for Picture Languages

Below we propose a new method for learning picture languages based on a new
type of representations of picture languages. The new representation of a picture
language consists of two parts: a function R : Σ∗,∗ → (Σ∪{#})∗ which rewrites
any two-dimensional picture over Σ into a string over Σ ∪ {#} and a (string)
language L ⊆ (Σ ∪{#})∗. Then (R,L)-picture language is the set of all pictures
P ∈ Σ∗,∗ such that R(P ) is in L. We say that a string language LS R-represents
a picture language LP, if for each picture P it holds that P ∈ LP if and only if
R(P ) ∈ LS.

There are possible many different methods for rewriting a picture into a
string. Let us discuss some of them.

121

How to Learn Picture Languages

Research in Computing Science 148(11), 2019ISSN 1870-4069



Any rectangular picture P ∈ Σ∗,∗ can be represented by storing all symbols
(colors of pixels) into a string in the row-by-row fashion. Such simple repre-
sentation does not contain the information about dimensions of the picture.
Therefore, we can add delimiter # for marking ends of rows. E.g., the picture
of dimension 3-by-4 containing only letters a will be represented by the string
aaaa#aaaa#aaaa and the language LP

1 of all nonempty pictures filled with b’s
will be represented by the (string) language LS

1 = {(bn#)m−1bn | m,n > 0}. Ev-
idently, the language LS

1 is context-sensitive but not context-free. Not all words
over {b,#} represent pictures. We would prefer a representation which allows to
represent simple picture languages (like LP

1 ) by simple (e.g. low in the Chomsky
hierarchy) string languages. Fortunately, the sample picture language LP

1 can
be also represented by the string language defined by the regular expression
(b+#)∗b+.

The above representation does not allow any simple representation for many
elementary picture languages, like the picture language LP

vl of all pictures con-
taining a column of b’s and a’s elsewhere. Such language could be represented
using a function R which rewrites the picture into a string column-by-column.
However instead of allowing different paths during rewriting pictures into strings,
we propose to use a window of size 3-by-3. For a picture P , the function Rw will

scan the extended picture P̂ with the window row-by-row and store the contents
of the window (also row-by-row) into a string. E.g., the picture of dimensions
2-by-3 containing a’s in the first and last column and b’s in the middle column
will rewritten into the string

####ab#ab|###abaaba|###ba#ba#|#ab#ab###|abaaba###|ba#ba####

(the vertical lines are not present in the string, we have added them in order to separate
contents of the window from different positions). Intuitively, such representation can
preserve the information about neighboring rows and columns of the picture.

6.1 Experimental Results

Our ultimate goal is to learn target picture language L from given sets S+ and S−

of positive and negative sample pictures. That is, we know that S+ ⊆ L and S− ⊆
Σ∗,∗\L. First, we apply the picture-to-string function Rrw to all known sample pictures.
Then we use Rrw(S+) and Rrw(S−) as positive and negative samples to infer an Rrw-
representation of L using RPNI algorithm.

To experimentally verify the proposed learning protocol, we have generated ran-
dom positive and negative examples of four picture languages. All our sample picture
languages are over the binary alphabet {a, b}:

L1 is the set of all rectangular pictures (not necessarily square) filled with b’s and
containing a diagonal of a’s either from the top-left corner or from the top-right
corner. The diagonal leads till the border of the picture.

L2 is the set of all pictures which contain several rows filled with a’s followed by rows
of b′ till the bottom of the picture.

L3 is the set of all pictures of dimensions at least (3, 3) filled with b’s except border
filled with a’s.
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L4 is the set of all pictures with regular chessboard pattern of a’s and b’s. The top-left
corner of such picture can contain a or b, but the whole picture must have the
chessboard pattern.

Sample pictures from each of the sample languages are shown in Table 1.

Table 1. Sample pictures from the picture languages L1, L2, L3 and L4.

# # # # # #

# a b b b #

# b a b b #

# b b a b #

# b b b a #

# # # # # #

# # # # # #

# a a a a #

# a a a a #

# a a a a #

# b b b b #

# # # # # #

# # # # # #

# a a a a #

# a b b a #

# a b b a #

# a a a a #

# # # # # #

# # # # # #

# a b a b #

# b a b a #

# a b a b #

# b a b a #

# # # # # #

In our experiments we have generated different training and testing sets of positive
and negative sample pictures for each of the sample languages. Our sets of sample
pictures contained pictures of dimensions between 3 and 8 such that each training set
contained approximately the same number of positive and negative samples.

By applying the function Rrw with window size 3-by-3 we have rewritten the sample
pictures into sample strings. Then for each set S of sample strings, we have learned a
deterministic finite state automaton consistent with S. For that we have used an RPNI
implementation in MATLAB from [1]. Afterwards, we tested the resulting automaton
on an independent test set of pictures (rewritten into strings by the function Rrw). The
learned finite automata correctly recognize the training set of pictures, however they
do not accept/reject correctly all pictures from the test sets.

Below in Table 2 we report accuracy – the ratio of correctly accepted/rejected
sample pictures within a test set of the same size as the training set used to infer the
corresponding automaton. We have noted also running times for the algorithm RPNI
for different sizes of training sets. All experiments were performed on a 64 bit Windows
PC with Intel Core i5-4460 processor running at 3.2 GHz.

The absolute value for the running time is not so important as we believe that the
running times can be substantially reduced by re-implementing the RPNI algorithm
in C or C++ and by using a more recent model of CPU. The interesting information
is that the running time of the RPNI algorithm varies for different picture languages
considerably. In particular, the language L2 seems to be “easy” for RPNI compared to
other sample languages.

6.2 Possible Extensions

The above representation does not allow any simple representation for many elementary
picture languages, like the picture language LP

sq of all square pictures containing b’s. Let
us extend the above representation. Instead of collecting all symbols (colors of pixels)
of a picture in a fixed order, we will allow “to draw” the picture by traversing in an
arbitrary order encoded in the string representation together with symbols of the fields
of the picture. For that let Π0 = {l, r, u, d} be a fixed alphabet encoding directions
of movements to the left, right, up and down. Then a word w = w1w2 . . . wn, where
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Table 2. Accuracy and time (in seconds) for learning sample languages for different
sizes of training sets.

Lang.
100 examples 200 examples 400 examples 800 examples 1600 examples

Acc Time Acc Time Acc Time Acc Time Acc Time

L1 0.84 35.67 0.84 244.22 0.91 996.12 0.90 1316.04 0.97 964.99

L2 1.00 1.68 1.00 3.72 1.00 7.67 1.00 11.63 0.99 317.12

L3 0.86 31.62 0.88 134.52 0.89 396.32 0.95 531.85 0.95 2883.87

L4 0.83 62.31 0.83 185.98 0.91 413.62 0.91 1532.75 0.91 2175.82

wi ∈ Π∗, where Π = Π0 ∪Σ ∪ {#} for i = 1, . . . n, can be interpreted as follows. The
interpretation starts with i = 1 and the row-column position (x1, y1) = (1, 1) at the
top left corner of the picture. If w1 = #, then n = 1 and the word encodes the empty
picture. Otherwise, if wi ∈ Σ ∪{#}, then the field at position (xi, yi) is “paint” by the
symbol wi and the position for the next step does not change: (xi+1, yi+1) = (xi, yi).
Let η : Π → Z × Z be the mapping η(l) = (0,−1), η(r) = (0, 1), η(u) = (−1, 0),
η(d) = (0, 1), and η(x) = (0, 0) for all x ∈ Σ ∪ {#}. If wi ∈ Π, then the position
changes to (xi+1, yi+1) = (xi, yi) + η(wi). Interpreting a word w in this way does not
ensure, that each position of the drawn picture is assigned a symbol from Σ. Therefore,
we will assume that the fields of the picture which were not visited or visited without
assigning a symbol from Σ have a fixed “background” color α ∈ Σ. We say that a
picture P ∈ Σ∗,∗ of dimension (m,n) was painted by the word w ∈ Π∗ if

– starting in the top left field of the rectangular picture P0 ∈ {α}m,n, where α is the

fixed background symbol, during interpretation of w on the bordered picture P̂0,
we do not leave the tape where P̂0 is stored and

– the resulting picture is P .

For example, if a is the background symbol, by interpreting (brd)n−1br#dl# we paint
the square picture of dimension (n, n), for n ≥ 1, with diagonal marked by the symbols
b and with symbols a elsewhere. Then the string language (rd)∗u#dl# represents all
“empty” square pictures. On the other hand, single word brbdblb represents all pictures
of size (m,n) where m,n ≥ 2 consisting of symbols a except of small 2-by-2 square
containing four symbols b located at the top left corner of the picture.

7 Conclusions

We have introduced a new representation of picture languages which differs from known
ones. It is based on a function that rewrites given picture into a string and a string
language that is used to decide whether the picture belongs to the picture language or
not. Evidently, the complexity of recognizing whether the picture is from the picture
language depends mainly on the complexity of the membership problem for the string
language.

We experimented with the rewriting function Rrw which rewrites the picture by
storing the contents of a scanning window of size 3-by-3 when scanning given picture
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row by row. The obtained results show that using this function and a classical gram-
matical inference algorithm RPNI, which is capable of inferring regular languages, we
can infer some simple picture languages.

Nevertheless, this paper is only the first step in applying the new representation of
picture languages for inferring picture languages. Further theoretical study is needed
to establish the power of such representations with respect to known classes of picture
languages. By combining different functions for rewriting pictures into strings and
different classes of string languages (or automata to recognize them) we can obtain a
rich set of picture language classes.

The results of our experiments encourage more thorough study employing other
known methods for inferring string languages, like evidence driven state merging algo-
rithms [9].

Acknowledgement. This research was supported by the Charles University Grant
Agency (GAUK) project no. 1198519.
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31. Pr̊uša, D., Mráz, F.: Two-dimensional sgraffito automata. In: International Con-
ference on Developments in Language Theory. pp. 251–262. Springer (2012)
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